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Abstract We use a stochastic patch occupancy model of invertebrates in the Mound Springs ecosystem of SA
to assess the ability of incidence function models to detect environmental impacts an metapopulations. We
assume that the probability of colonisation decreases with increasing isolation, and the probability of
exUnceion 15 constant across spring vents. We run the models to quasi-equilibrium, and then impose an impact
by increasing the local extinction probability. We sample the cutput at various times pre- and post-impact,
and examine the probability of detecting a significant change in population parameters. The Incidence
Function Medel approach turns cut to have little power to detect environmental impacts on metapopulations.

1. INTRODUCTION

Detecting jmpacts on populations is an important
and well studied part of environmental impact
assessment. However, many populations exist as
aetworks  of  smaller  popuiations,  called
metapopulations.  Metapopulations  arise  either
naturally or through habitat fragmentation. To our
knowiedge, there s little theory on how to detect
cenvironmental | impacts,
Usually metapopulation survey data is limited to
the presence or absence of a species in a
subpopulation. Moreover, resources are limited,
and 1t (s unlikely -thatextensive metapopulations
can be completely surveyed every year indefinitely,
When should a metapopulation be sampled to
detect an impact that significantly increases the
probability of global extinction?

in a metapopulation setting, detecting an impact
requires measuring changes in the probabilities of
extinction and recolonisation of subpopulations,
Cooper and Mangel [1998] and Thrall et al. [1998]
showed that detailed observations of single
subpopulations can fead to misleading conclusions
when  metapopulation  dynamics  are  ignored,
because the local dynamics do not necessarily
provide information about the dynamics of the
system as a whole. Futhermore, once an impact has
occurred, it may take some time before the
occupancy pattern reaches a new guasi-stationary
distribution  [Peliett 19971 As  a  resuli,
presencefabsence surveys of a metapopulation
immediately after a putative impact may have very
little power to detect changes in the parameters of
the system. We explore some of these issues using

_on. . metapopulations.

a particular  metapopulation  system,  aquatic
invertebrates i the Mound Springs of South
Australia.

Mound springs arise around the margins of the
Creat Artesian Basin {GAB) in central Australia
where underground aquifers are close to the
surface, and pressurised water leaks through faults
to emerge as spring vents. The wetlands assoctated

..with spring vents range. in size from.a few square.....

metres to several hectares. Individual spring vents
tend to occur in clusters, known as spring groups,
varying in size from 1 to over 200 spring venis.
The aquatic ccosysten associated with' the $prings
is of national biodiversity significance because of
the unigue species of flora and fauna that cccupy
the springs. There are 38 endemic invertebrate
species [Harris 1992, Ponder 1986, Ponder et al,
19891, and at least 3 plant species of conservation
significance [Kinhiil-Stearns {984].

The main threats to individual spring vent
populations are trampling by stock and water
extraction. GAB water 15 extracted through bores
for many uses, the biggest user being pastoralism
{B3%; Cox et al. 19981, Water extraction causes a
local drawdown in aguifer pressure leading to
reduced spring flow. For the present, we assume
that either impact leads to increased probabilities of
iocal extinction for ipvertebrate populations.

We restrict ourselves hers to using two surveys of
patch occupancy, pre- and post-impact, to detect
impacts. While obviously not optimal; this may
well represent the only data available in many
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realistic  circumstances.  Pre-impact  data  in

particular are scarce.
2. PATCH OCCUPANCY MODEL

First, we need a model describing how the
occupancy of patches by individual species changes
with time. Hansk:i [1994] described a simple
stochastic  moedel  for  metapopulations,  the
Incidence Function Model (IFM}, designed to be
parameterised  with  single surveys of patch
occupancy data, The primary advantage of the IFM
s that it needs very little data, and is widely
accepted in the conservation biology literature. Day
and Possingham [1995} and ter Braak et al. [1998]
showed that the TFM has some poor statistical
properties. i addition to having five or more
parameters. The large nuraber of parameters make
this model especially difficult tc fit to limited data,
Some of the spring groups we are interested in have
as few as 9 patches, We developed a versicn of the
[FM with only two parameters, one each for
colonisation and extinction. We use this model to
assess the ability of the IFM approach to produce
useable parameter estimates for our system.

Colonisation probabilities depend on the state of
the system, with the probability that an occupied
palch { contributes successful colonists to an empty
patch f given by

—ad

pi.j =¢ ( 1)

where « 15 the euclidean distance in metres between
the vents, and o is the rate at which colonisation

“dectines with distance. When ¢=0 the probability of Ll

colonisation is 1. The probability that an empty
patch f receives at least one colonist 1s:

ﬁ,j = |- ﬁ(l—pi_j)oﬁ

i=hi#j ( Z)

where ¢; is O if patch { is vnoccupied and 1 if it is
occupied. The prebability of local extinction W is
assumed to be the same for all patches. There can
be mare than one turnover per time step.

The key assumption that allows the incidence
function madel to be fit to a single patch occupancy
survey 18 to assume that each patch is at the
equilibrium  of & two state markov chain
{occupied/unoccupied) with the transition matrix:

future state

present state unoccupied occupied
unoccupied -4 A
occupied i -t

The equilibrium  probability that the patch is
occupied, the incidence J,, is

P
IR AT

(3)

The parameters are fit by minimising the difference
between the observed patch occupancy values o,
and the incidences J:

minz_nf log, {J, }~{1=0;)log (1= J; ).

edl i ( 4 )

This expression is technically a pseudo-likelihood,
rather than a likelihood, because the IFM ignores
spatial and temporal autocorrelation in patch
OCCUPANCY.

3. RESULTS

We test our model on the patch oceupancy data for
the hydrobiid snail Fonscachlea zeidleri in the
Bopeachee Springs group. There are 9 patches in
Bopeeches springs (Figure 1), and F. zeidler
occurs in patches 2, 6, and 7. Fitting the IFM to
these data gives estimates of o = 0.015 and U =
(.14, These parameters give colonists a 22%
chance of reaching a patch [00 m away, and each
patch has a 14% chance of going extinet each year.

@ 5 8% 2

Figure I Spring vent locations at Bopeechee
springs. Coordinates in m. Size of symbol is
proportional to area in m”, Scale bar 1s 100 m.

3.1 Basic Dynamies

Starting from the 3 patches occupied by F. zeidleri,
and using the parameters estimated above the
model fluctuates between 4 and 7 patches cccupied
aver a 200 year time span (Figure 2). If an impact
doubles the local extinction rate at year (0 for 50
years, the stationary distribution shifts downwards,
and fluctuates between i and 4 patches occupied,
occasionally going extinet.

Generally the higher the local extinction
probability, or the quicker the colonisation
probabifity decays, the greater the probability that
the system goes extinet within 56 years (Figure 3).
For £ geidleri, increasing 1 from 0.4 to 0.28
increases the
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Figure 2 Time series of the number of occupied
patches with (dotted line} and without {solid line)
doubling the probability of local extinction for 50
years. Paiches 7 and 8 are never eccupied in these
example trajectories. o= 0.015, u=0.14 (0.28)
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Figure 3 Probability of extinction within 30 years
for F. zeidleri in the Bopeechee spring group as a
function of the dispersal and extinction parameters.
The initial patch state is identical with that sampled
in 1995,

probability of global extinction from 20% to
greater than 60%.

3.3 Estimating Parameters Pre- and Post-
Impact

We ran our model for 1000 vears from randomly
chosen starting states, and fit the IFM to the patch
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Figure 4 Parameter estimates for 1000 replicate
runs of the model. Each circle is proportional to the
frequency of the state that generates that pair of
estimates.

occupancy pattern present in the last time step. We
discarded runs that went extinet before sampling.

Many common states gensrate reasonable
parameter estimates. However, over 40% of the
samples lead to obvicusly false estimates, including
the most commonly observed state. Obviously false
estimates include those with extinction probabilities
= 1 or (), and extreme colonisation parameters

~leading to colonisation probabilities = 1.or 0. States. ... .

with oaly one patch occupied, or all patches
occupied always generate bad estimates. Beyond
that, there are no obvious characteristics

" distinguishing states that generate good results from

those generating bad results,. We exclude all
obviously false estimates in what follows. The
parameters in the model are inversely correlated
{Figure 4). The estimated parameters lead to 50
year extinction probabilities across the full range
from <10% to >90%.

Assuming that sensible estimates, good or bad, can
be obtained from a pre-unpact snapshot of patch
occupancy, the next question is how well a change
in those rates can be detected. We ran the model as
before, taking a snapshot at year 1000. We then
doubled the local extinction rate (to 0.28) and ran
the model for another 1, 5 or 10 years before taking
a second, post-impact spapshot. We discard any
combinations where one or both states lead to non-
sensical parameter estimates. '

The distribution of system states shifts markedly
posi-impact, sven after only one year (Figure 5).
The mede of the distribution did net shift between
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Figure 5 Distribution of system states represented
only by the number of occupied patches. Pre-
impact = Solid Line. I Year post-impact = dotted
line. 5 vyears post-impact = dotted line and
triangles. {0 years post-impact = dotted line and
pluses.

vears 5 and |0, although the curve as a whole
drops. and the probability mass in states with one
patch  occupied increases dramatically. This
suggests that by 10 years post-impact the system
has settled into a new quasi-stationary distribution.

We compared the estimated parameters of the
system pre- and and ten years post-impact for those

Ceombinations ot TPHrRmeters T wWherd  both U States

yielded sensible estimates (Table 1. The results for
one year and five years post-impact were simnilar.

_Most pairs of surveys indicated that one parameter .

had deteriorated while the other had improved. For
comparison, we repeated the process for a ten year
time span without an impact (Table 2). The same
pattern is reflected In the results, suggesting that
this method is not detecting an impact,

4. CONCLUSIONS

The primary conclusion is that the IFM method is
useless for detecting impacts on metapopulation
parameters, at least in the mound springs system.
There are at least two possible reasons,

First. the number of patches (9) in the system we
are interested in is much smaller than patch systems
to which the IFM model has been applied in the
past. The primary assumption in the I'M model is
that the colonisation rates do not change with time,

Table 1 Changes in estimated parameters ten vears
post-impact. Three combinations did not change
state.

Dispersal Decay (o)

Extinction (1) Improved Waorse
Improved 17% 469
Warse 34% 3%

Table Z As for Table | but without an increased
local extinction rate.

Dispersal Decay {¢)

Extinction (L) Improved Worse
Improved 0% 419
Waorse 42% 7%

- a system with many patches, this may be largely

true on average, especially if there are patches
present that are largely immune to extinction
(*mainlands’ in the island biogeography sense).
With a small number of patches, the change in
colonisation rate for an empty patch with 4 or 3
other patches colonised could be guite large.

Second, the IFM assumes that each patch is
oceupied  with s ‘equilibrium’  frequency,
presupposing that the parameters of the system are
not changing. However, this is definitely not the
case. when an_environmental .impact has. been.
imposed on the metapopulation in between two
satnple points.

Application. of the JFM . often. detects. a. change.in. ..
both parameters, in opposite directions. This
disappeinting and paradoxical result arises from the
strong correlation between the parameters, and the
fact that many states of the system generate non-
sensical results. The different states of the system
appear to fluctuate along the lines of equal
extinction probability in Figure 3 — an increase in
colonisation ability can be compensated for by a
decrease in extinction probability.

Owr future work will concentrate cn two fronts.
First, developing stochastic moedels incorporating
the known biology into colenisation and extinction
mechanisms in a simply way. Second. developing
better methods of using survey data to fit
parameters fo the models. This will likely include
making wse of quasi-stationary distributions to
calculate likeithoods for initial surveys, and
Markov Chain Monte Carlo,
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